
PHYSICAL REVIEW E, VOLUME 65, 021602
Fingering instability of thin evaporating liquid films
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The fingering instability of growing dry patches in an evaporating film of a polar liquid placed on a solid
substrate is investigated. The instability manifests itself as fingering of mobile fronts between growing ‘‘dry’’
~thin! and shrinking ‘‘wet’’~thick! regions of the film corresponding to two stable states of the evaporating film
in contact with its vapor. The boundaries of the fingering instability are found through linear stability analysis
of numerical solutions of the nonlinear evolution equation defining the film profile, and the influence of the
evaporation rate, polar intermolecular forces, and chemical heterogeneity of the substrate is investigated.
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I. INTRODUCTION

The fingering instability of a moving gas-liquid-solid con
tact line, driven by gravity or thermocapillarity, has be
observed experimentally and studied theoretically in a nu
ber of investigations@1–6#. The contact line region is usuall
formed by a sharp moving front between two domains—
‘‘thick’’ bulk film and a ‘‘thin’’ precursor film. The contact
line instability is caused by the formation of a ridge on th
front which becomes unstable due to a mechanism analo
to the Rayleigh instability of a liquid cylinder. The instabilit
results in the development of ‘‘fingers’’—liquid rivulets pro
truding toward the dry region.

A similar phenomenon is also observed during drying
of thin films of polar fluids~water! @7–9# as well as during
dewetting of polymer solutions@10#. In the course of evapo
ration of a film of a polar liquid, nucleation of circular ‘‘dry’
spots is observed, which are claimed to be regions cove
by a very thin residual film@8,9#. These ‘‘dry’’ regions grow
in size until after some time they become unstable with
spect to corrugations of the moving boundary between
thin residual film and the thick initial film.1 The aim of this
article is to investigate this instability, which has not be
explained so far.

A characteristic feature of polar fluids is the presence
both long-range van der Waals intermolecular forces
short-range polar forces associated with the electrical do
layer. Due to the presence of the polar intermolecular forc
the dependence of the film free energyg on the film thick-
nessh can acquire a double-well shape~see@8# for details!.
The dependence of the film chemical potentialm5dg/dh on
h becomes nonmonotonic, as shown in Fig. 1. In this cas
a film is in equilibrium with its vapor, there can be two stab
equilibrium values of the film thicknessh1 andh2 , and one
unstable value in between. A film whose thicknessh is be-
tweenh1 and h2 undergoes ‘‘spinodal decomposition’’ int
two stable states@8,11,12#.

1This boundary is actually a narrow region where the film thic
ness changes sharply.
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Consider a film of a polar fluid which is in equilibrium
with its vapor and has an equilibrium thicknessh2 . If the
vapor pressure is gradually reduced, this causes the
evaporation and the equilibrium thicknessh2 decreases. Be
yond the point of Maxwell construction the ‘‘thick’’ state
becomes metastable, and fluctuations may cause nucle
of the other stable state, with a smaller thicknessh1 and
lower free energy. The probability of nucleation grows wh
h2 approaches the minimum point of the dependencedg/dh
~see Fig. 1!. This state, a ‘‘dry spot,’’ will propagate into the
thicker state, exhibiting ‘‘dry spot’’ growth. In the following
we do not consider the nucleation stage, which depends
the level of noise in the system, but investigate the stage
steady growth of dry spots described by a propagating fr
dividing the thin~‘‘dry’’ ! and thick~‘‘wet’’ ! regions. Under
certain conditions, the propagating front between the t
states becomes unstable and exhibits fingering. This
qualitatively the observations of Samid-Merzelet al. @8,9#.
Below we investigate the conditions for this instability
occur.

II. GOVERNING EQUATION

Consider a thin layer of a polar liquid~e.g., water! of
thicknessh, placed horizontally between a solid substra

-

FIG. 1. A nonmonotonic chemical potential resulting from com
bined action of polar and van der Waals forces as a function of
thicknessh. The dashed lines mark the two alternative values of
stable equilibrium thickness.
©2002 The American Physical Society02-1
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and the vapor of the same liquid. The liquid can evapor
from the film into the vapor phase.

The film evolution is described by the following equatio
@12,13#:

]h

]t
5“•

h3

3h
“Fdg~h!

dh
2g¹2hG2

e

r Fdg~h!

dh
2g¹2h2rmvG ,

~1!

whereh is the liquid viscosity,g is the liquid-vapor surface
tension,r is the liquid density,mv is the vapor chemica
potential,e is the parameter characterizing the evaporat
rate~which can be either obtained from the gas kinetic the
or found experimentally!, and

g~h!5
SLWd0

2

h2 1SP exp
d02h

l 0
~2!

is the free energy due to intermolecular interactions@12#,
SLWd0

252A/(12p), A is the Hamaker constant,d0 is the
molecular interaction distance, andl 0 is the Debye length.
For wetting polar liquids,A,0 andSP,0.

We introduce the scalingx→ax, t→bt, h→dh, with

a5S dg

SPND 1/2

, b5
3hg

d~SPN!2 ,

d5S A

6pSPND 1/3

, SPN5
SP

l 0
exp~d0 / l 0!, ~3!

and rewrite Eq.~1! in the following dimensionless form:

ht5“•Fh3
•“S 2¹2h2

1

h3 1exp~2xh! D G2VF2¹2h2
1

h3

1exp~2xh!2M G . ~4!

This equation contains three dimensionless parameters:

V5
18peng

~6pA2SPN!1/3, M5
rmv

SPN ,

x5
1

l 0
S uAu
6pSPND 1/3

, ~5!

whereV.0, M,0, andx.0 characterize the rate of evap
ration, the vapor chemical potential, and the Debye leng
respectively.

Using the typical valuesA510220J, d050.2 nm, l 0
50.6 nm, h51023 g/m s, g50.08 J/m2, and SP

50.002 J/m2 @12# yields the values of the dimensionless p
rametersV50.02,M520.003, andx51.09. Note that the
dependence of the chemical potentialm5dg/dh of the liq-
uid film on the film thicknessh is nonmonotonic, and for
02160
te

n
y

h,

-

some fixed values of the vapor chemical potentialmv there
are two stable equilibrium values of the film thicknessh1 and
h2 ~see Fig. 1!.

III. UNIFORMLY PROPAGATING FRONTS

Equation~4! has been solved numerically by means o
finite-difference method using a semi-implicit Cran
Nicolson scheme~see the Appendix!, with the boundary con-
ditionshx5hxxx50 on both ends of the computational inte
val. Figure 2 shows the film profiles for different values
the parameters. The propagating front develops a bump,
ter seen in the enlarged inset. When the evaporation ra
large @Fig. 2~a!#, the bump gradually decreases, so that
final stationary profile becomes monotonic. At lower evap
ration rates@Fig. 2~b!#, the bump persists.

The solutions shown in Figs. 2~a! and 2~b! represent the
fronts between the two equilibrium states propagating w

FIG. 2. Time sequences of propagating fronts forM520.003
andx51.085, andV50.78 ~a! and 0.078~b!. The initial profile is
shown by the dashed line. The inset shows the enlargement o
bump region.
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constant speeds, which can be obtained from the comp
tion data either directly~by tracking the motion of the pro
file! or by using the analytical formula

U5
V

h22h1
E

2`

` S 2
1

h3 1e2xhDdx, ~6!

where h(x) is a numerically computed stationary profil
Both methods were implemented to check that identical
sults were obtained. The dependence of the front propaga
speedU on the dimensionless parameterV characterizing the
evaporation rate is shown in Fig. 3.

The dependence is almost linear, which means that
computation using Eq.~6! is only very slightly affected by
changes of the film profile with changingV. Note that the
equilibrium thickness does not depend onV. For V→0, the
propagation speed of a single one-dimensional front vanis
due to mass conservation.

IV. FINGERING INSTABILITY OF MOVING FRONTS

A. Linear analysis

In order to study the linear stability of a moving fron
between the ‘‘dry’’ and the ‘‘wet’’ regions of the film, ob
tained numerically in the form of a stationary wave soluti
h0(j), j5x2Ut, in the preceding section, consider infin
tesimal perturbations of the front,h̃5u(j)exp(vt1iky),
wherev is the growth rate andk is the spanwise wave num
ber ~along they axis aligned with the front!.

Linearization leads to the following eigenvalue problem

vu1L0u1k2L2u1k4h0
3u50, ~7!

where the linear differential operatorsL0 and L2 are de-
scribed in the Appendix. The eigenvalue problem has b
solved numerically by discretizing Eq.~7! on the interval
@2L1 ,L2# and using homogeneous boundary conditions t

FIG. 3. Dependence of the front propagation speedU on the
evaporation parameterV for M520.003,x51.085.
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should be satisfied by the zero~Goldstone! modeh0j ~see the
Appendix!. Numerical solution of this eigenvalue proble
gives the dispersion relationv(k). Some typical dispersion
relations are shown in Fig. 4.

One can see that when the evaporation rate is high
transverse perturbations decay. However, with the decre
of V, instability occurs with a nonzero wave number corr
sponding to the maximum growth rate@Fig. 4~b!#. This type
of instability corresponds to fingering patterns observed
experiments with drying thin liquid films@7–9#.

B. Instability threshold

The threshold of the transverse fingering instability cor
sponds tok50, i.e., to the long-wave perturbations. In ord
to find the long-wave limit of the fingering instability of th
moving fronts, consider Eq.~7! in the form

vu5Lu. ~8!

FIG. 4. Dispersion relationsv(k) for transversely stable~a! and
unstable~b! propagating fronts forM520.003,x51.085, and dif-
ferent values ofV.
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For small wave numbersk, the perturbation growth rate i
expanded as

v~k!5v2k21v4k41¯ .

Expanding also

u5u01k2u21¯ , L5L01k2L21¯ ,

one obtains from Eq.~7! the following eigenvalue problem
for u2 :

L0u252v2u02L2u0 . ~9!

The solvability condition of this equation is

v252

E
2`

`

u0
†L2u0dx

E
2`

`

u0u0
†dx

, ~10!

whereu0 is the Goldstone mode of the operatorL0 andu0
† is

the corresponding eigenfunction of the operator adjoint
L0 , given in the Appendix. The eigenfunction of the adjo
operator corresponding to the zero eigenvalue has been
puted numerically and used in Eq.~10! to obtain v2 as a
function of the evaporation parameterV. The result is shown
in Fig. 5. The critical value of the parameterV correspond-
ing to the onset of transverse instability isVcr50.121 for
M520.003,x51.085.

C. Two-dimensional computations of the fingering instability

We have performed direct numerical simulations of E
~4! in two dimensions by means of the Crank-Nicols
finite-difference scheme. In order to solve the resulting ni
diagonal system of linear equations we have used the S
algorithm @14# for sparse matrices. The computations ha

FIG. 5. The second-order coefficient in the dispersion relat
v2 as a function ofV for M520.003 andx51.085.
02160
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been performed on a grid 41341 with the time step2 Dt
51023. Figure 6 presents the film profiles forx51.085,
M520.003, and two different values ofV. At high evapo-
ration rates, the leading edge of the film remains stable@Fig.
6~a!#. At low evaporation rates, one can see the developm
of the fingering instability of a propagating front@Fig. 6~b!#.

V. EFFECT OF SUBSTRATE INHOMOGENEITIES ON
THE FINGERING INSTABILITY OF DRYING FILMS

Substrate inhomogeneity is a very important factor wh
can substantially affect the dynamics of thin liquid films a
their stability @15–17#. In order to model possible effects o
the substrate inhomogeneity on the fingering instability
growing dry patches in a thin evaporating film of a pol
liquid, we have considered the case when the Hamaker c
stant is a periodic function of the longitudinal coordinate.
this case, the motion of the front between two stable state
thin liquid film is described by Eq.~1! with g(h) defined by
Eq. ~2! with the Hamaker constant being a periodic functi

2In order to check the scheme accuracy the computations w
also performed for the grids 81381 and 1013101. The difference
in the results was less than 2%.

n

FIG. 6. Film shapes forx51.085, M520.003, andV50.78
~a! and 0.078~b!.
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FINGERING INSTABILITY OF THIN EVAPORATING . . . PHYSICAL REVIEW E65 021602
of the longitudinal coordinatex:

A5A11A2 sin
2p

l
x. ~11!

We considered only values ofA2 such that the variation ofA
does not change the number of stationary states of the ev
rating liquid film corresponding to the given value of th
vapor chemical potentialmv ~two stable and one unstab
states!. Due to this choice of the periodically varying Ha
maker constant, the dimensionless parametersV andx in Eq.
~4! are also periodic functions ofx:

V5V01V1 sin
2p

l
x, x5x01x1 sin

2p

l
x. ~12!

We have simulated Eq.~4! with V and x given by Eq.
~12! and found the effect of the surface inhomogeneity on
front propagation speed~i.e., the rate of the dry patch
growth!. The dependenceU(A2 /A1) is shown in Fig. 7. One
can see that the front speed~i.e., the growth rate of a dry
patch! decreases with increase of the surface inhomogen
amplitude. In accordance with the above conclusions on
effect of the front speed on its fingering instability, the s
face inhomogeneity also leads to destabilization of the fro
This is illustrated in Fig. 8 where two dispersion curves a
presented, corresponding to two different values of
A2 /A1 ratio.

VI. CONCLUSIONS

We have studied the fingering instability of growing d
patches in an evaporating film of a polar fluid. We ha
demonstrated that the mechanism of the instability is
same as that of the fingering instability in gravity or the
mocapillary driven films, i.e., the formation of a ridge on t
moving front between two states of the liquid film corr
sponding to two different thicknesses. The ridge formation
controlled by the front speed, which is proportional to t
evaporation rate. An increase of the evaporation rate
creases the ridge and stabilizes the front. This situation i

FIG. 7. The dependence of the front propagation speed on
relative amplitude of the inhomogeneity of the Hamaker consta
02160
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contrast with the case of gravitationally or thermocapilla
driven films where increasing front speed destabilizes
front.

For the parameter values typical of experiments carr
out in @8,9# ~see Sec. II! our computations predict the wave
length of the most unstable perturbation to be about 1mm.
This is in fair agreement with experimental observatio
@8,9#, where a typical wavelength of the rim instability at th
initial stage was found to be a few micrometers and the ch
acteristic wavelength of the well-developed strongly nonl
ear structure was found to be about 10mm. It would be
interesting to check experimentally our prediction about
dependence of the rim instability on the rate of the fi
evaporation. We are not aware of such measurement
present.

Our investigation of the influence of the substrate che
cal heterogeneity on the fingering instability of growing d
patches reveals its retardation effect on the front speed, l
ing to enhancement of the fingering instability of the fron
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APPENDIX

The system of linear algebraic equations resulting fr
the semi-implicit Crank-Nicolson scheme of numerical so
tion of Eq. ~4! on the (n11)th time step is

Ajuj 22
n111Bjuj 21

n111Cjuj
n111D juj 11

n111Ejuj 12
n115F j

n ,
~A1!

Aj52
Dt

2~Dx!3 F N4

Dx
2

N3

2 G ,

he
.

FIG. 8. Dispersion curvesv(k) corresponding to two differen
values ofA2 /A1 characterizing the surface inhomogeneity.
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Bj5
Dt

Dx F 2N4

~Dx!32
N3

2~Dx!22
N2

2Dx
1

N1

4 G ,
Cj5F2

3Dt

~Dx!4 N41
Dt

~Dx!2 N2112
Dt

2
N0G ,

D j5
Dt

Dx F 2N4

~Dx!3 1
N3

2~Dx!22
N2

2Dx
2

N1

4 G ,
Ej52

Dt

2~Dx!3 F N4

Dx
1

N3

2 G ,
where

N452h3,

N3523h2hx ,

N25
3

h
2xh3 exp~2xh!1V,

N1523h2hxxx22hxF 3

h2 1~32xh!xh exp~2xh!G ,
N0523h2hxxx26hhxhxxx1F2

3

h22~32xh!

3xh exp~2xh!Ghxx2F2
6

h3 1~626xh1x2h2!

3xh exp~2xh!Ghx
21VF2

3

h4 1x exp~2xh!G .
HereDx andDt are steps in space and time, respectively

The linear differential operators in Eq.~7! are

L05
d

dx F f 03

d3

dx3 1 f 01

d

dx
1 f 00G1 f 000, ~A2!

L25 f 22

d2

dx2 1 f 21

d

dx
1 f 20, ~A3!

where

f 035h0
3, f 015

3

h0
2xh0

3 exp~2xh0!1V,

f 005U1h0x F2
3

h0
22~32xh!xh2 exp~2xh0!G23h0

2h0xxx ,
dv

02160
f 00052VF 3

h0
42x exp~2xh0!G ,

f 2252h0
3, f 2153h0

2h0x , f 2052 f 01.

The boundary conditions for the problem~7! are

u215a11u11a10u0 , x5L1 ,

u225u21b11u111b10u050, x5L1 ,

uN115a21uN211a20uN , x5L2 ,

uN125uN221b21uN211b20uN50, x5L2 ,

where

a1152
21a1Dt

22a1Dt
, a105

b1~Dt !222

12a1Dt/2
,

a215
221a2Dt

21a2Dt
, a205

22b2~Dt !2

11a2Dt/2
,

b1152~211a11!12a1Dt~11a11!1b1~Dt !2~12a11!,

b10524a1Dt1a10@212a1Dt2b1~Dt !2#,

b2152~211a21!22a2Dt~11a21!1b2~Dt !2~12a21!,

b2054a2Dt1a20@222a2Dt2b2~Dt !2#,

a152~l11l2!, b15l1l2 ,

a2522 Re~l3!, b25ul3u2,

wherel i are the roots of the characteristic equation of t
linear problem withk50 andh05h1,25const corresponding
to the boundary conditionh̃→0 for x→6`.

The linear operator adjoint toL0 in Eq. ~7! can be found
according to the procedure described in Ref.@6#. This yields

L0
15h0

3 d4

dx4 19h0
2h0x

d3

dx3 1F9~h0
2h0x!x1h0

3S 3

h0
42xe2xh0D

1VG d2

dx2 1@18h0h0xh0xx16h0x
3 16h0xxxh0

22U#
d

dx

1~4h0x
2 22h0h0xx2hh0

2x12h0x
2 2h0h0xx!h0

2x2e2xh0

2VS 3

h0
42xe2xh0D . ~A4!
h.
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