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Fingering instability of thin evaporating liquid films
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The fingering instability of growing dry patches in an evaporating film of a polar liquid placed on a solid
substrate is investigated. The instability manifests itself as fingering of mobile fronts between growing “dry”
(thin) and shrinking “wet” (thick) regions of the film corresponding to two stable states of the evaporating film
in contact with its vapor. The boundaries of the fingering instability are found through linear stability analysis
of numerical solutions of the nonlinear evolution equation defining the film profile, and the influence of the
evaporation rate, polar intermolecular forces, and chemical heterogeneity of the substrate is investigated.

DOI: 10.1103/PhysReVvE.65.021602 PACS nuni)er68.15+e, 47.20.Ma, 47.54.r, 68.08—p

[. INTRODUCTION Consider a film of a polar fluid which is in equilibrium
with its vapor and has an equilibrium thickness. If the
The fingering instability of a moving gas-liquid-solid con- vapor pressure is gradually reduced, this causes the film
tact line, driven by gravity or thermocapillarity, has been€vaporation and the equilibrium thickndss decreases. Be-

observed experimentally and studied theoretically in a numyond the point of Maxwell construction the “thick” state
ber of investigationf1—6]. The contact line region is usually becomes metastable, and fluctuations may cause nucleation

formed by a sharp moving front between two domains— of the other stable state, with a smaller thicknégsand
aIower free energy. The probability of nucleation grows when

“thick” bulk film and a “thin” precursor film. The contact gy .
line instability is caused by the formation of a ridge on thishz app.roaches. the m|n|m“um point Pf t'he dependent}g&ih
ee Fig. 1 This state, a “dry spot,” will propagate into the

front which becomes unstable due to a mechanism analogoé icker state, exhibiting “dry spot” growth. In the following,

to the Rayleigh instability of a liquid cylinder. The instability . . :
results in the development of “fingers™—liquid rivulets pro- we do not consider the nucleation stage, which depends on
the level of noise in the system, but investigate the stage of

truding toward the dry region. . :
A s?milar phenome);mngis also observed during drying outSteady growth of dry spots described by a propagating front

of thin films of polar fluids(watep [7—9] as well as during dividing the thin(*dry” ) and thick(‘wet” ) regions. Under

: ; certain conditions, the propagating front between the two
dewetting of polymer solutiongl0]. In the course of evapo- L . S
ration of a film of a polar liquid, nucleation of circular “dry” sta;?tsatp ZTOT;:ZS o%gzt?gﬁo:g%fe;gx!gs_mfg%g“;g'[ggls fits
spots is observed, which are claimed to be regions covere, atively . vatl ” ! o e
by a very thin residual filnf8,g]. These “dry” regions grow elow we investigate the conditions for this instability to
in size until after some time they become unstable with redccur-
spect to corrugations of the moving boundary between the Il. GOVERNING EQUATION
thin residual film and the thick initial film.The aim of this ' Q
article is to investigate this instability, which has not been Consider a thin layer of a polar liquite.g., water of
explained so far. thicknessh, placed horizontally between a solid substrate

A characteristic feature of polar fluids is the presence of

both long-range van der Waals intermolecular forces and 0.002¢ by hy h
short-range polar forces associated with the electrical double o . o p n
layer. Due to the presence of the polar intermolecular forces | |

the dependence of the film free enemgyn the film thick-  ~°-902¢ ' \ :

nessh can acquire a double-well shafsee[8] for detailg. _0.00al

The dependence of the film chemical potentiat dg/dh on
h becomes nonmonotonic, as shown in Fig. 1. In this case, it0-006f
a film is in equilibrium with its vapor, there can be two stable
equilibrium values of the film thickneds, andh,, and one
unstable value in between. A film whose thicknésis be- -0.01}
tweenh,; andh, undergoes “spinodal decomposition” into
two stable statef3,11,13.

-0.008}

d
-0.012+ dh

FIG. 1. Anonmonotonic chemical potential resulting from com-
bined action of polar and van der Waals forces as a function of film
This boundary is actually a narrow region where the film thick- thicknessh. The dashed lines mark the two alternative values of the
ness changes sharply. stable equilibrium thickness.
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and the vapor of the same liquid. The liquid can evaporate’7 - - -
from the film into the vapor phase.

a)
The film evolution is described by the following equation h

[12,13: 6 I
oh h® _[dg(h) L] €[dah) ,
ERAET [W‘ Tplan Ve sy

oY)

where 7 is the liquid viscosity,y is the liquid-vapor surface 4 |
tension, p is the liquid density,u, is the vapor chemical

potential, e is the parameter characterizing the evaporation
rate(which can be either obtained from the gas kinetic theory3 |
or found experimentally and

'

200 300 X 400

giwgy2 do—h 2 ‘
g(h)=— % +sPexp OI 2 300 X 400
° 7 r r T
is the free energy due to intermolecular interactipbg], b)

S*Wda=—A/(12m), A is the Hamaker constant, is the
molecular interaction distance, amglis the Debye length. 6
For wetting polar liquidsA<0 andSP<0.

We introduce the scaling— ax, t— Bt, h— éh, with

5 -
5,}/ 1/2 37],),
“lem o P EE N A Ny
A \1B o sP 250 300 X 350
5=(m) , S =Eequ0/|0)v (3) 3|
and rewrite Eq(2) in the following dimensionless form:
2 1 1 1
1 1 0 100 200 300 X 400
htzv-[hg-v(—Vzh——3+exp(—)(h) —Q|-Vv?h- 5 , ,
h h FIG. 2. Time sequences of propagating fronts Kb —0.003

and y=1.085, and) =0.78(a) and 0.078b). The initial profile is
(4) shown by the dashed line. The inset shows the enlargement of the

+exp(—xh)—M
ex(— xh) bump region.

This equation contains three dimensionless parameters:  some fixed values of the vapor chemical potentiglthere
are two stable equilibrium values of the film thicknéssand
18mevy piLy h, (see Fig. 1
0= (6mAZSPN) 173 M= PN
I1l. UNIFORMLY PROPAGATING FRONTS

1/3
(5) Equation(4) has been solved numerically by means of a

finite-difference method using a semi-implicit Crank-
Nicolson schemésee the Appendijxwith the boundary con-
whereQ)>0, M <0, andy>0 characterize the rate of evapo- ditionsh,=h,,,=0 on both ends of the computational inter-
ration, the vapor chemical potential, and the Debye lengthval. Figure 2 shows the film profiles for different values of
respectively. the parameters. The propagating front develops a bump, bet-
Using the typical valuesA=102°J, dy=0.2nm, |,  ter seen in the enlarged inset. When the evaporation rate is
=0.6nm, 7»=103g/ms, y=0.08JmM, and S° large[Fig. 2a)], the bump gradually decreases, so that the
=0.002 J/mi [12] yields the values of the dimensionless pa-final stationary profile becomes monotonic. At lower evapo-
rameters()=0.02,M = —0.003, andy=1.09. Note that the ration ratedFig. 2(b)], the bump persists.
dependence of the chemical potentie dg/dh of the lig- The solutions shown in Figs.(@ and 2b) represent the
uid film on the film thicknessh is nonmonotonic, and for fronts between the two equilibrium states propagating with

X 67TSPN
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FIG. 3. Dependence of the front propagation speedn the 0.004
evaporation parametéd for M =—0.003, y=1.085. ©

constant speeds, which can be obtained from the computa
tion data either directlyby tracking the motion of the pro-  0.002
file) or by using the analytical formula

U= o fx ! ‘Xh)d 6
_hZ_hl — o _Hg_l_e X, () 0

1-Q=0.078

where h(x) is a numerically computed stationary profile. 2—Q=0.035
Both methods were implemented to check that identical re-_g g2 |
sults were obtained. The dependence of the front propagatio
speedJ on the dimensionless paramefeicharacterizing the
evaporation rate is shown in Fig. 3.

The dependence is almost linear, which means that the-0.004
computation using Eq6) is only very slightly affected by
changes of the film profile with changir@. Note that the FIG. 4. Dispersion relations (k) for transversely stablé) and
equilibrium thickness does not depend@nFor Q) —0, the  unstable(b) propagating fronts foM = —0.003, y=1.085, and dif-
propagation speed of a single one-dimensional front vanishe&grent values of).
due to mass conservation.

0.02 0.04 k 0.06

should be satisfied by the zefGoldstong¢ modeh,, (see the
Appendi¥. Numerical solution of this eigenvalue problem
gives the dispersion relation(k). Some typical dispersion
relations are shown in Fig. 4.

In order to study the linear stability of a moving front  One can see that when the evaporation rate is high, all
between the “dry” and the “wet” regions of the film, ob- transverse perturbations decay. However, with the decrease
tained numerically in the form of a stationary wave solutionef (), instability occurs with a nonzero wave number corre-
ho(§), §=x—Ut, in the preceding section, consider infini- sponding to the maximum growth raftgig. 4(b)]. This type
tesimal perturbations of the fronth=u(&)expt+iky), of instability corresponds to fingering patterns observed in
wherew is the growth rate anfl is the spanwise wave num- experiments with drying thin liquid filmg7—-9].
ber (along they axis aligned with the front

Linearization leads to the following eigenvalue problem:

IV. FINGERING INSTABILITY OF MOVING FRONTS

A. Linear analysis

B. Instability threshold

2 423,
wu+ Lou+k“Lou+k hou=0, () The threshold of the transverse fingering instability corre-

sponds tk=0, i.e., to the long-wave perturbations. In order

where the linear differential operato, and £, are de- g find the long-wave limit of the fingering instability of the

scribed in the Appendix. The eigenvalue problem has beeﬁwoving fronts, consider Eq7) in the form
solved numerically by discretizing Eq7) on the interval
[—L4,L,] and using homogeneous boundary conditions that ou=Lu. (8
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FIG. 5. The second-order coefficient in the dispersion relation
w, as a function of) for M = —0.003 andy=1.085.

For small wave numberk, the perturbation growth rate is
expanded as

o(K)= wk?+ w K4+
Expanding also
U:U0+k2U2+"‘, £:£0+k2£2+"',

one obtains from Eq(7) the following eigenvalue problem
for u,:

£0U2: - wZUO_,CzUO. (9)
4000
The solvability condition of this equation is FIG. 6. Film shapes foy=1.085,M = —0.003, and2=0.78
(a) and 0.0780b).
f ubLougdx been performed on a grid 441 with the time step At
0o - (10) =10°. Figure 6 presents the film profiles for=1.085,
,=—

B N ' M= —0.003, and two different values éi. At high evapo-
J UgUodX ration rates, the leading edge of the film remains stghilg.
o 6(a)]. At low evaporation rates, one can see the development
of the fingering instability of a propagating froffig. 6(b)].
whereuy is the Goldstone mode of the operatty and ug is
the corresponding eigenfunction of the operator adjoint to V- EFFECT OF SUBSTRATE INHOMOGENEITIES ON
Lo, given in the Appendix. The eigenfunction of the adjoint ~ THE FINGERING INSTABILITY OF DRYING FILMS

operator corresponding to the zero eigenvalue has been com- Substrate inhomogeneity is a very important factor which
puted numerically and used in E(LO) to obtainw, as a  can substantially affect the dynamics of thin liquid films and
function of the evaporation paramef@r The result is shown their stability[15—17. In order to model possible effects of
in Fig. 5. The critical value of the paramet@rcorrespond- the substrate inhomogeneity on the fingering instability of
ing to the onset of transverse instability §5,=0.121 for  growing dry patches in a thin evaporating film of a polar
M= —0.003, y=1.085. liquid, we have considered the case when the Hamaker con-
stant is a periodic function of the longitudinal coordinate. In
) ) ) ] o - this case, the motion of the front between two stable states of
C. Two-dimensional computations of the fingering instability thin liquid film is described by Eq(1) with g(h) defined by
We have performed direct numerical simulations of Eq.Ed. (2) with the Hamaker constant being a periodic function
(4) in two dimensions by means of the Crank-Nicolson
finite-difference scheme. In order to solve the resulting nine- 2In order to check the scheme accuracy the computations were
diagonal system of linear equations we have used the Storiiso performed for the grids &181 and 10X 101. The difference
algorithm [14] for sparse matrices. The computations havein the results was less than 2%.
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FIG. 7. The dependence of the front propagation speed on the 0 0.01 0.02 0.03 0.04 k 0.05

relative amplitude of the inhomogeneity of the Hamaker constant. ] ) ) )
FIG. 8. Dispersion curvea(k) corresponding to two different

of the longitudinal coordinate: values ofA, /A, characterizing the surface inhomogeneity.

B 27 contrast with the case of gravitationally or thermocapillary
A=At Ay sin——X. (1) driven films where increasing front speed destabilizes the
front.
We considered only values @, such that the variation o& For the parameter values typical of experiments carried

does not change the number of stationary states of the evap@ut in[8,9] (see Sec. )lour computations predict the wave-
rating liquid film corresponding to the given value of the length of the most unstable perturbation to be abowni
vapor chemical potentia#v (two stable and one unstable This is in fair agreement with experimental observations
stateg. Due to this choice of the periodically varying Ha- [8,9], where a typical wavelength of the rim instability at the
maker constant, the dimensionless paramedeasid y in Eq. initial stage was found to be a few micrometers and the char-
(4) are also periodic functions of acteristic wavelength of the well-developed strongly nonlin-
ear structure was found to be about Afn. It would be
2m 27 interesting to check experimentally our prediction about the
Q=Qo+Qysin—=x, x=xotxisin——x. (120 dependence of the rim instability on the rate of the film
evaporation. We are not aware of such measurements at

We have simulated Eq4) with Q and y given by Eq.  Present. o _ _
(12) and found the effect of the surface inhomogeneity on the Our investigation of the influence of the substrate chemi-
front propagation speedi.e., the rate of the dry patch cal heterogenelty on the fmgermg instability of growing dry
growth. The dependende (A, /A,) is shown in Fig. 7. One _patches reveals its retardatlt_)n eff_ect on the_ _front speed, lead-
can see that the front speéik., the growth rate of a dry N9 to enhancement of the fingering instability of the front.
patch decreases with increase of the surface inhomogeneity
amplitude. In accordance with the above conclusions on the
effect of the front speed on its fingering instability, the sur-
face inhomogeneity also leads to destabilization of the front. This work was supported by the Israel Science Founda-
This is illustrated in Fig. 8 where two dispersion curves aretion. The authors are grateful to Steven Lipson and Alex
presented, corresponding to two different values of theOron for helpful discussions.

A, /A, ratio.
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VI. CONCLUSIONS APPENDIX

We e st the figenng sty ofgrowing cry 1¢S5t o fneat etyle patone resutng o
patches in an evaporating film of a polar fluid. We havetion of Eq.(4) on the @1+ 1)th time step is

demonstrated that the mechanism of the instability is the 9. P
same as that of the fingering instability in gravity or ther-
mocapillary driven films, i.e., the formation of a ridge on the Aju?f21+ Bju?fllJr Ciu?+1+ Dju}‘f:ll+ Eju?jf%: Fi,
moving front between two states of the liquid film corre- (A1)
sponding to two different thicknesses. The ridge formation is

controlled by the front speed, which is proportional to the

evaporation rate. An increase of the evaporation rate de- A= At
creases the ridge and stabilizes the front. This situation is in ! 2(Ax)3

N, Ns
Ax 2|
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B_At 2N, N3 N, N S 3 o
ITAX| (A%)3 2(Ax)2 Ax T Al 000~ ~ h—g_XeXFi_X 0|
3At At At =92h3 =13h2 - _
Cj:{_(Ax)4N4+(Ax)2N2+1_7NO}’ e T Sholo Taom o
The boundary conditions for the proble) are
At[ 2N, N3 N, N,
= = U =apuita , X=Ly,
D= ax |3 T 2002 2ax 4 | 1= @t aado .

U_o=Uy+ B1iUy1+ BrgUo=0, X=Lg,

c_ AU [Ng N
T 2(Ax)3 [Ax 2 ) Un+1= azUn—1+ aply,  X=Lo,
where Un+2=Un—2F BotUn-1F B2oUn=0, X=Lj,
Ny=—h3, where
Ny=—3h2%h,, 2+ a;At bi(At)?—2

T T TgAL YO T g Au2

3
- 3 _
No=—xh®exp(—xh) + 9, —2+a,At 2—by(At)?

AT o aAr T YT T a,A2

3
N;=—3h?h,,— 2h, nz t@=xh)xhexp(—xh),

1811: 2(_1+ a11)+2a1At(1+ Ofll)"l'bl(At)z(l_all),

2 3 B].O: _4alAt+ al({2+ 2a1At_bl(At)2],
No= = 3h?nx— Byt | = 5= (3= xh)
Bo1=2(— 1+ ap) —2a,At(1+ ayy) + by(A1)2(1— ayy),
XXhexq—Xh)}hxx Hg+(6—6xh+X2h2) Boo=4a,At+ apd 2— 2a,At—by(At)?],

=—(N1tN2), by=N\y,

3
hi+ Q| — g+ x exp(—xh) |.

X xhexp(— xh)

a,=—2Re\3), by=|Agf?
HereAx andAt are steps in space and time, respectively. \yhere\; are the roots of the characteristic equation of the
The linear differential operators in E7) are linear problem witkk=0 andh,=h; ,=const corresponding

3 to the boundary conditioh—0 for x— + .

£0=d— f°3F+f°1d_+f0° +fo00s (A2) The linear operator adjoint td, in Eqg. (7) can be found
X X X according to the procedure described in R6f. This yields
2 4 3 3
Lo=Targa+ farg, + o0, (A3) 0dx4+9h hoxga +|9(h Zhoy)x+ D3l =2 h —xe Xho>
where 2 . ) d
. +Q d—xz+[18hoh0xh0xx+ 6ho, + 6h0xxxho—U]d—X
fos=h3, for=—— xh3exp— xho)+Q,
5= Tor=g ™ x5 X =xMo + (4h2,~ 2hghoy— hh2x + 212, — hohoex )2y 2e Mo
3 2 2 3 —vh
foo=U+hox _?_(3_Xh)Xh exp( = xho) | = 3hghoxxxs -0 A Xe Xof. (A4)
0 0
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